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STRUCTURED CODES

Traditional approach at current security levels produces very large
keys: several Kb to ≈ 1Mb.
(Classic McEliece/NTS-KEM).

The problem is: public key is a large matrix, size O(n2).

Idea: public matrix with compact description (Gaborit ’05).

This would allow to describe public-key more efficiently.

Need families of codes with particular automorphism group.
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EXAMPLES IN LITERATURE

Quasi-Cyclic Codes (Berger, Cayrel, Gaborit, Otmani ’09).

Quasi-Dyadic Codes (Misoczki, Barreto ’09).
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SECURITY

Several families have QC/QD description:
GRS, Goppa, Generalized Srivastava (P. ’11).

Problem: extra structure = extra info for attacker.

Critical algebraic attack (Faugère, Otmani, Perret, Tillich ’10).

Solve system of equations derived from H ·GT = 0 to recover private
key.

QC/QD + algebraic structure crucial to reduce number of unknowns
of system.

After a few years of fixes and new attacks: keys getting bigger,
confidence/interest getting smaller.
(Faugère, Otmani, Perret, de Portzamparc, Tillich ’16, Barelli-Couvreur ’18).
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CASE STUDY: NIST SUBMISSIONS

BIG QUAKE: based on Quasi-Cyclic Binary Goppa Codes

Designed in a conservative way.

BIG QUAKE parameters (bytes):

q m n t PK Size SK Size Ciph Size Security
2 18 10,070 190 149,625 41,804 492 5
2 18 7,410 152 84,132 30,860 406 3
2 12 3,510 91 25,389 14,772 201 1

DAGS: based on Quasi-Dyadic q-ary Generalized Srivastava Codes

More aggressive choice of parameters.

DAGS parameters (bytes):
q m n t PK Size SK Size Ciph Size Security
28 2 1,600 176 19,712 6,400 1,632 5
28 2 1,216 176 11,264 4,864 1,248 3
26 2 832 104 8,112 2,496 656 1
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SPARSE-MATRIX CODES

Family of codes characterized by very sparse parity-check matrix.

DEFINITION 1 (LDPC CODE)
An [n, k ] binary linear code which admits a parity-check matrix of
constant row weight w ∈ O(1).

If we write H = (H0 | H1) resp. r × k and r × r then G = (Ik | HT
0 H−T

1 )

.

The non-trivial block is dense, so this is a natural choice of public key
for McEliece.

Decodable with very efficient probabilistic “bit flipping” algorithm
(Gallager, ’63), small decoding failure rate (DFR).
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SECURITY

Distinguish public matrix u look for low-weight codewords in the dual.

This is also a decoding problem! So we have essentially one
assumption.

Best attacks: generic “search” algorithms like Information-Set
Decoding (ISD).

MDPC: “relaxed” version of LDPC (Misoczki, Tillich, Sendrier and Barreto ’12).

Change weight w from very low (≈ 10) to “moderate” (O(
√

n)).

Still decodable, gain in security makes up for degradation.
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STRUCTURES SPARSE-MATRIX CODES

Using “plain” LDPC/MDPC is not practical due to long code lengths.

Possible to build QC-LDPC/MDPC codes and have compact keys.

Matrices formed by circulant blocks
a0 a1 . . . ap−1

ap−1 a0 . . . ap−2
...

...
. . .

...
a1 a2 . . . a0


Correspond to ideals of R = F2[x ]/(xp − 1): describe using ring
arithmetic.

Sparse-matrix codes don’t possess inherent algebraic structure.

QC property alone does not provide a structural attack.
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SPARSE-MATRIX MCELIECE

KEY GENERATION

Choose h0,h1 in R of combined weight w .
SK: parity-check matrix formed by circulant blocks h0,h1.
PK: generator matrix formed by identity and g = h0h−1

1 .

ENCRYPTION

Take message µ ∈ R.
Sample vectors e0,e1 in R of combined weight t .
Output c = (µ+ e0, µ · g + e1).

DECRYPTION

Set (e0,e1) = DecodeBitFlipping(c).
Return ⊥ if decoding fails.
Else recover µ (truncate).
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BIKE

Suite of KEM schemes based on the bit-flipping decoder and
QC-MDPC codes.

Three variants, independently published.

1,2: CAKE (Barreto, Gueron, Güneysu, Misoczki, P., Sendrier, Tillich, ’17).

3: Ouroboros (Deneuville, Gaborit, Zémor, ’17).

BIKE-1: use McEliece and non-systematic generator matrix to avoid
polynomial inversion and save time (latency).

BIKE-2: use Niederreiter and systematic parity-check with (possibly)
pre-computed keys to save space (bandwidth).

BIKE-3: use “noisy” decoder to have simpler security reduction.
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LEDACRYPT

Based on QC-LDPC codes.

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Following a long line of work from Baldi, Chiaraluce et al.
(2007-onwards).

Variable number of blocks n0 = 2,3,4.

Private key is made dense via secret matrix Q −→ ≈QC-MDPC.

Specialized “Q-decoder” provides better decoding performance.

Sizes comparable to BIKE.

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 14 / 27



LEDACRYPT

Based on QC-LDPC codes.

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Following a long line of work from Baldi, Chiaraluce et al.
(2007-onwards).

Variable number of blocks n0 = 2,3,4.

Private key is made dense via secret matrix Q −→ ≈QC-MDPC.

Specialized “Q-decoder” provides better decoding performance.

Sizes comparable to BIKE.

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 14 / 27



LEDACRYPT

Based on QC-LDPC codes.

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Following a long line of work from Baldi, Chiaraluce et al.
(2007-onwards).

Variable number of blocks n0 = 2,3,4.

Private key is made dense via secret matrix Q −→ ≈QC-MDPC.

Specialized “Q-decoder” provides better decoding performance.

Sizes comparable to BIKE.

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 14 / 27



LEDACRYPT

Based on QC-LDPC codes.

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Following a long line of work from Baldi, Chiaraluce et al.
(2007-onwards).

Variable number of blocks n0 = 2,3,4.

Private key is made dense via secret matrix Q −→ ≈QC-MDPC.

Specialized “Q-decoder” provides better decoding performance.

Sizes comparable to BIKE.

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 14 / 27



LEDACRYPT

Based on QC-LDPC codes.

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Following a long line of work from Baldi, Chiaraluce et al.
(2007-onwards).

Variable number of blocks n0 = 2,3,4.

Private key is made dense via secret matrix Q −→ ≈QC-MDPC.

Specialized “Q-decoder” provides better decoding performance.

Sizes comparable to BIKE.

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 14 / 27



LEDACRYPT

Based on QC-LDPC codes.

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Following a long line of work from Baldi, Chiaraluce et al.
(2007-onwards).

Variable number of blocks n0 = 2,3,4.

Private key is made dense via secret matrix Q −→ ≈QC-MDPC.

Specialized “Q-decoder” provides better decoding performance.

Sizes comparable to BIKE.

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 14 / 27



LEDACRYPT

Based on QC-LDPC codes.

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Following a long line of work from Baldi, Chiaraluce et al.
(2007-onwards).

Variable number of blocks n0 = 2,3,4.

Private key is made dense via secret matrix Q −→ ≈QC-MDPC.

Specialized “Q-decoder” provides better decoding performance.

Sizes comparable to BIKE.

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 14 / 27



SAMPLE PARAMETERS: LEVEL 1

BIKE offers a noticeable tradeoff.

BIKE parameters (bytes):
BIKE-# p w t PK Size SK Size Ciph Size

1 10,163 142 134 2,541 267 2,541
2 10,163 142 134 1,271 267 1,271
3 11,027 134 154 2,757 252 2,757

Below we present LEDAkem for ease of comparison.

LEDAkem parameters (bytes):
n0 p w t PK Size SK Size Ciph Size
2 15,013 9 143 1,880 468 1,880
3 9,643 13 90 2,416 604 1,208
4 8,467 11 72 3,192 716 1,064

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 15 / 27



SAMPLE PARAMETERS: LEVEL 1

BIKE offers a noticeable tradeoff.

BIKE parameters (bytes):
BIKE-# p w t PK Size SK Size Ciph Size

1 10,163 142 134 2,541 267 2,541
2 10,163 142 134 1,271 267 1,271
3 11,027 134 154 2,757 252 2,757

Below we present LEDAkem for ease of comparison.

LEDAkem parameters (bytes):
n0 p w t PK Size SK Size Ciph Size
2 15,013 9 143 1,880 468 1,880
3 9,643 13 90 2,416 604 1,208
4 8,467 11 72 3,192 716 1,064

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 15 / 27



SAMPLE PARAMETERS: LEVEL 1

BIKE offers a noticeable tradeoff.

BIKE parameters (bytes):
BIKE-# p w t PK Size SK Size Ciph Size

1 10,163 142 134 2,541 267 2,541
2 10,163 142 134 1,271 267 1,271
3 11,027 134 154 2,757 252 2,757

Below we present LEDAkem for ease of comparison.

LEDAkem parameters (bytes):
n0 p w t PK Size SK Size Ciph Size
2 15,013 9 143 1,880 468 1,880
3 9,643 13 90 2,416 604 1,208
4 8,467 11 72 3,192 716 1,064

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 15 / 27



SAMPLE PARAMETERS: LEVEL 1

BIKE offers a noticeable tradeoff.

BIKE parameters (bytes):
BIKE-# p w t PK Size SK Size Ciph Size

1 10,163 142 134 2,541 267 2,541
2 10,163 142 134 1,271 267 1,271
3 11,027 134 154 2,757 252 2,757

Below we present LEDAkem for ease of comparison.

LEDAkem parameters (bytes):
n0 p w t PK Size SK Size Ciph Size
2 15,013 9 143 1,880 468 1,880
3 9,643 13 90 2,416 604 1,208
4 8,467 11 72 3,192 716 1,064

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 15 / 27



DECODING FAILURES ARE BAD!

Problem 1: reaction attacks (Guo, Johansson, Stankovski, ’16).

Observe decryption of several (≈ 300 million) ciphertexts: analyze
decoding failures to reconstruct private key (distance spectrum).

Solution: use ephemeral keys.

Problem 2: IND-CCA security.

IND-CCA conversions require perfect correctness or at least trivial
DFR (≈ 2−128).

Decoding algorithms have (currently) DFR around 10−7 to 10−9.

Solution: all variants only claim IND-CPA security.
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NEW DEVELOPMENTS

New, improved BIKE decoder (Sendrier, Vasseur, ’19).

Possible to adjust block length to achieve desired DFR.

BIKE will feature IND-CCA version with static keys in Round 2.

5 out of 7 code-based NIST submissions in Round 2 use QC
structure.

Is there any other structure we can use? Can we generalize this, do it
better/differently?

Use alternative Reproducible Codes (Santini, P., Baldi, ’18).

Can possibly negate DOOM speedup and reaction attacks.
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Part III

RANK METRIC
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RANK METRIC

One of alternative metrics used in Coding Theory.

RANK METRIC

Let x ∈ Fn
qm and β = (β1, . . . , βm) basis for Fqm over Fq .

wtR(x) = Rank(φβ(x)), where φβ is projection over Fq (columns).
dR(x , y) = wtR(x − y).

So rank metric codes are matrix codes.

[n, k ] RANK METRIC LINEAR CODE OVER Fqm

A subspace of dimension k of Fn
qm (Gabidulin, ’85).

A subspace of dimension k of Fm×n
q (Delsarte, ’78).

SUPPORT OF A WORD

Supp(x) = span < x1, . . . , xn >Fq .

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 19 / 27



RANK METRIC

One of alternative metrics used in Coding Theory.

RANK METRIC

Let x ∈ Fn
qm and β = (β1, . . . , βm) basis for Fqm over Fq .

wtR(x) = Rank(φβ(x)), where φβ is projection over Fq (columns).
dR(x , y) = wtR(x − y).

So rank metric codes are matrix codes.

[n, k ] RANK METRIC LINEAR CODE OVER Fqm

A subspace of dimension k of Fn
qm (Gabidulin, ’85).

A subspace of dimension k of Fm×n
q (Delsarte, ’78).

SUPPORT OF A WORD

Supp(x) = span < x1, . . . , xn >Fq .

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 19 / 27



RANK METRIC

One of alternative metrics used in Coding Theory.

RANK METRIC

Let x ∈ Fn
qm and β = (β1, . . . , βm) basis for Fqm over Fq .

wtR(x) = Rank(φβ(x)), where φβ is projection over Fq (columns).

dR(x , y) = wtR(x − y).

So rank metric codes are matrix codes.

[n, k ] RANK METRIC LINEAR CODE OVER Fqm

A subspace of dimension k of Fn
qm (Gabidulin, ’85).

A subspace of dimension k of Fm×n
q (Delsarte, ’78).

SUPPORT OF A WORD

Supp(x) = span < x1, . . . , xn >Fq .

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 19 / 27



RANK METRIC

One of alternative metrics used in Coding Theory.

RANK METRIC

Let x ∈ Fn
qm and β = (β1, . . . , βm) basis for Fqm over Fq .

wtR(x) = Rank(φβ(x)), where φβ is projection over Fq (columns).
dR(x , y) = wtR(x − y).

So rank metric codes are matrix codes.

[n, k ] RANK METRIC LINEAR CODE OVER Fqm

A subspace of dimension k of Fn
qm (Gabidulin, ’85).

A subspace of dimension k of Fm×n
q (Delsarte, ’78).

SUPPORT OF A WORD

Supp(x) = span < x1, . . . , xn >Fq .

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 19 / 27



RANK METRIC

One of alternative metrics used in Coding Theory.

RANK METRIC

Let x ∈ Fn
qm and β = (β1, . . . , βm) basis for Fqm over Fq .

wtR(x) = Rank(φβ(x)), where φβ is projection over Fq (columns).
dR(x , y) = wtR(x − y).

So rank metric codes are matrix codes.

[n, k ] RANK METRIC LINEAR CODE OVER Fqm

A subspace of dimension k of Fn
qm (Gabidulin, ’85).

A subspace of dimension k of Fm×n
q (Delsarte, ’78).

SUPPORT OF A WORD

Supp(x) = span < x1, . . . , xn >Fq .

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 19 / 27



RANK METRIC

One of alternative metrics used in Coding Theory.

RANK METRIC

Let x ∈ Fn
qm and β = (β1, . . . , βm) basis for Fqm over Fq .

wtR(x) = Rank(φβ(x)), where φβ is projection over Fq (columns).
dR(x , y) = wtR(x − y).

So rank metric codes are matrix codes.

[n, k ] RANK METRIC LINEAR CODE OVER Fqm

A subspace of dimension k of Fn
qm (Gabidulin, ’85).

A subspace of dimension k of Fm×n
q (Delsarte, ’78).

SUPPORT OF A WORD

Supp(x) = span < x1, . . . , xn >Fq .

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 19 / 27



RANK METRIC

One of alternative metrics used in Coding Theory.

RANK METRIC

Let x ∈ Fn
qm and β = (β1, . . . , βm) basis for Fqm over Fq .

wtR(x) = Rank(φβ(x)), where φβ is projection over Fq (columns).
dR(x , y) = wtR(x − y).

So rank metric codes are matrix codes.

[n, k ] RANK METRIC LINEAR CODE OVER Fqm

A subspace of dimension k of Fn
qm (Gabidulin, ’85).

A subspace of dimension k of Fm×n
q (Delsarte, ’78).

SUPPORT OF A WORD

Supp(x) = span < x1, . . . , xn >Fq .

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 19 / 27



RANK METRIC

One of alternative metrics used in Coding Theory.

RANK METRIC

Let x ∈ Fn
qm and β = (β1, . . . , βm) basis for Fqm over Fq .

wtR(x) = Rank(φβ(x)), where φβ is projection over Fq (columns).
dR(x , y) = wtR(x − y).

So rank metric codes are matrix codes.

[n, k ] RANK METRIC LINEAR CODE OVER Fqm

A subspace of dimension k of Fn
qm (Gabidulin, ’85).

A subspace of dimension k of Fm×n
q (Delsarte, ’78).

SUPPORT OF A WORD

Supp(x) = span < x1, . . . , xn >Fq .

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 19 / 27



THE RANK METRIC WORLD

Possible to “translate” many concepts from Hamming metric.

Singleton Bound on largest minimum distance (MRD codes).
GV Bound on size of spheres.
Syndrome Decoding Problem (RSD): proved to be NP-Hard.

Few families with efficient decoding algorithm.

Gabidulin codes: ≈Reed-Solomon.
Low-Rank Parity-Check codes (LRPC): ≈LDPC.

Generic attack: rank equivalent of ISD, combinatorial (Chabaud, Stern, ’96).

Structural attacks exist (Gibson, ’95, ’96, Overbeck, ’05, Debris-Alazard, Tillich, ’18).
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CASE STUDY: NIST SUBMISSIONS

ROLLO: merge of 3 slightly different proposals on QC-LRPC codes.

LAKE: rank-Niederreiter, ≈BIKE-2.
LOCKER: PKE version of LAKE.
Rank-Ouroboros: rank version of Ouroboros (BIKE-3).

RQC: based on random codes ≈HQC.

Advantage: higher attack complexity O((n − k)3m3qtd (k+1)m
n e−m).

Choose much smaller parameters, get smaller sizes.

No DFR for RQC.
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RANK METRIC PARAMETERS

ROLLO: large amount of parameter sets, not easy to read through,
some info missing. We chose here Rank-Ouroboros.

Rank-Ouroboros parameters (bytes):
q m p t PK Size SK Size Ciph Size Security
2 127 67 8 2,128 2,128 2,128 5
2 101 59 8 1,490 1,490 1,490 3
2 89 53 6 1,180 1,180 1,180 1

DFR for above parameters is still too low (2−36,2−42) for e.g.
IND-CCA security.

RQC parameters (bytes):
q m p t PK Size SK Size Ciph Size Security
2 139 101 8 3,510 3,510 3,574 5
2 113 97 7 2,741 2,741 2,805 3
2 89 67 6 1,491 1,491 1,555 1

Sizes can be further compressed using seed expanders (also in other
schemes).
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CONSIDERATIONS

Sizes: very promising.

Speed: a little behind other code-based schemes.

Cryptanalysis: a lot behind.

At least 25 publications on ISD and improvements (see Classic
McEliece document).

Only a handful on rank metric
(Ourivski, Johansson, ’02, Gaborit, Ruatta, Schrek, ’16, Aragon, Gaborit, Hauteville, Tillich, ’18).

Several aspects and details unclear or unexplored.

More investigation needed.
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Part IV

CONCLUSIONS
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CONCLUSIONS

Code-based cryptography is prominent candidate for standardization.

Several distinctive strengths (and few well-known drawbacks).

Suitable for KEM: key exchange + encryption.

NIST has identified three macro-areas, each with their own pros/cons:

Conservative (binary Goppa, no structure)
Sparse-matrix (LDPC/MDPC, QC structure...for now)
Rank metric (LRPC, QC structure)

HQC/RQC: theoretical security advantage (CCA).

Round 2: protocol refinements, re-parametrizations, new/improved
implementations.
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FOLLOW THE NIST COMPETITION

FAU has been funded by NIST for PQC project.

Detailed competition wiki/database.

Will include parameters, sizes, security assumptions etc. +
challenges.

“Living” resource with external contributions.

Work in progress, first draft nearly ready - stay tuned!

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 26 / 27



FOLLOW THE NIST COMPETITION

FAU has been funded by NIST for PQC project.

Detailed competition wiki/database.

Will include parameters, sizes, security assumptions etc. +
challenges.

“Living” resource with external contributions.

Work in progress, first draft nearly ready - stay tuned!

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 26 / 27



FOLLOW THE NIST COMPETITION

FAU has been funded by NIST for PQC project.

Detailed competition wiki/database.

Will include parameters, sizes, security assumptions etc. +
challenges.

“Living” resource with external contributions.

Work in progress, first draft nearly ready - stay tuned!

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 26 / 27



FOLLOW THE NIST COMPETITION

FAU has been funded by NIST for PQC project.

Detailed competition wiki/database.

Will include parameters, sizes, security assumptions etc. +
challenges.

“Living” resource with external contributions.

Work in progress, first draft nearly ready - stay tuned!

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 26 / 27



FOLLOW THE NIST COMPETITION

FAU has been funded by NIST for PQC project.

Detailed competition wiki/database.

Will include parameters, sizes, security assumptions etc. +
challenges.

“Living” resource with external contributions.

Work in progress, first draft nearly ready - stay tuned!

EDOARDO PERSICHETTI FLORIDA ATLANTIC UNIVERSITY 19 MARCH 2019 26 / 27



Thank you
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